Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Molecules ; 28(6)2023 Mar 20.
Article in English | MEDLINE | ID: covidwho-2272021

ABSTRACT

The unusual and interesting architecture of the catalytic chamber of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) was recently explored using Cryogenic Electron Microscopy (Cryo-EM), which revealed the presence of two distinctive binding cavities within the catalytic chamber. In this report, first, we mapped out and fully characterized the variations between the two binding sites, BS1 and BS2, for significant differences in their amino acid architecture, size, volume, and hydrophobicity. This was followed by investigating the preferential binding of eight antiviral agents to each of the two binding sites, BS1 and BS2, to understand the fundamental factors that govern the preferential binding of each drug to each binding site. Results showed that, in general, hydrophobic drugs, such as remdesivir and sofosbuvir, bind better to both binding sites than relatively less hydrophobic drugs, such as alovudine, molnupiravir, zidovudine, favilavir, and ribavirin. However, suramin, which is a highly hydrophobic drug, unexpectedly showed overall weaker binding affinities in both binding sites when compared to other drugs. This unexpected observation may be attributed to its high binding solvation energy, which disfavors overall binding of suramin in both binding sites. On the other hand, hydrophobic drugs displayed higher binding affinities towards BS1 due to its higher hydrophobic architecture when compared to BS2, while less hydrophobic drugs did not show a significant difference in binding affinities in both binding sites. Analysis of binding energy contributions revealed that the most favorable components are the ΔEele, ΔEvdw, and ΔGgas, whereas ΔGsol was unfavorable. The ΔEele and ΔGgas for hydrophobic drugs were enough to balance the unfavorable ΔGsol, leaving the ΔEvdw to be the most determining factor of the total binding energy. The information presented in this report will provide guidelines for tailoring SARS-CoV-2 inhibitors with enhanced binding profiles.


Subject(s)
COVID-19 , Humans , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/metabolism , RNA, Viral , Suramin , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Molecular Docking Simulation
2.
Frontiers in molecular biosciences ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1710884

ABSTRACT

The Receptor Binding Domain (RBD) of SARS-CoV-2 virus harbors a sequence of Arg-Gly-Asp tripeptide named RGD motif, which has also been identified in extracellular matrix proteins that bind integrins as well as other disintegrins and viruses. Accordingly, integrins have been proposed as host receptors for SARS-CoV-2. However, given that the microenvironment of the RGD motif imposes a structural hindrance to the protein-protein association, the validity of this hypothesis is still uncertain. Here, we used normal mode analysis, accelerated molecular dynamics microscale simulation, and protein-protein docking to investigate the putative role of RGD motif of SARS-CoV-2 RBD for interacting with integrins. We found, that neither RGD motif nor its microenvironment showed any significant conformational shift in the RBD structure. Highly populated clusters of RBD showed no capability to interact with the RGD binding site in integrins. The free energy landscape revealed that the RGD conformation within RBD could not acquire an optimal geometry to allow the interaction with integrins. In light of these results, and in the event where integrins are confirmed to be host receptors for SARS-CoV-2, we suggest a possible involvement of other residues to stabilize the interaction.

3.
J Mol Graph Model ; 101: 107730, 2020 12.
Article in English | MEDLINE | ID: covidwho-863411

ABSTRACT

The SARS-CoV-2 main protease (Mpro) is an attractive target towards discovery of drugs to treat COVID-19 because of its key role in virus replication. The atomic structure of Mpro in complex with an α-ketoamide inhibitor (Lig13b) is available (PDB ID:6Y2G). Using 6Y2G and the prior knowledge that protease inhibitors could eradicate COVID-19, we designed a computational study aimed at identifying FDA-approved drugs that could interact with Mpro. We searched the DrugBank and PubChem for analogs and built a virtual library containing ∼33,000 conformers. Using high-throughput virtual screening and ligand docking, we identified Isavuconazonium, a ketoamide inhibitor (α-KI) and Pentagastrin as the top three molecules (Lig13b as the benchmark) based on docking energy. The ΔGbind of Lig13b, Isavuconazonium, α-KI, Pentagastrin was -28.1, -45.7, -44.7, -34.8 kcal/mol, respectively. Molecular dynamics simulation revealed that these ligands are stable within the Mpro active site. Binding of these ligands is driven by a variety of non-bonded interaction, including polar bonds, H-bonds, van der Waals and salt bridges. The overall conformational dynamics of the complexed-Mpro was slightly altered relative to apo-Mpro. This study demonstrates that three distinct classes molecules, Isavuconazonium (triazole), α-KI (ketoamide) and Pentagastrin (peptide) could serve as potential drugs to treat patients with COVID-19.


Subject(s)
Cysteine Endopeptidases/chemistry , Nitriles/pharmacology , Pentagastrin/pharmacology , Protease Inhibitors/pharmacology , Pyridines/pharmacology , Triazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Catalytic Domain , Computer Simulation , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Databases, Pharmaceutical , Drug Approval , Drug Discovery , Drug Repositioning , High-Throughput Screening Assays/methods , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitriles/chemistry , Pentagastrin/chemistry , Protease Inhibitors/chemistry , Pyridines/chemistry , Triazoles/chemistry , United States , United States Food and Drug Administration , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL